MATH 155-Chapter 9.1-Sequences
 Dr. Nakamura

1. Definition: (Infinite Sequence): An infinite sequence is a function, a, defined on the set of positive integers such that for each positive integer n, there corresponds an real number $a(n)$. An infinite sequence is commonly denoted by

$$
a(1), a(2), a(3), \cdots, a(n), \cdots \cdot
$$

or commonly denoted by

$$
a_{1}, a_{2}, a_{3}, \cdots, a_{n}, \cdots
$$

The values are called the terms of the sequence. ($a_{1}=$ first term, etc.) The abbreviation for the entire sequence is $\left\{a_{n}\right\}_{1}^{\infty}$ or $\left\{a_{n}\right\}$.
2. Definition: (Convergence of a Sequence): We say that the sequence $\left\{a_{n}\right\}$ converges to the real number L, or has the limit L, and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

If the sequence does not converge, we say it diverges.
3. Theorem: Limit Laws for Sequences: If $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=k$, then

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm K$
2. $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}=c L$.
3. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L K$.
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{K}, \quad b_{n} \neq 0, K \neq 0$.
5. Theorem: Squeeze Theorem for Sequences: Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be sequences.

If $a_{n} \leq c_{n} \leq b_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}$,
then $\lim _{n \rightarrow \infty} c_{n}=L$.
5. Theorem: Absolute Value Theorem:

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Note: The limit value must be 0 . For other values, the theorem does not hold.
6. Definition: (Monotonic Sequence): A sequence $\left\{a_{n}\right\}$ is monotonic or monotone increasing, if its terms are non-decreasing

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots .
$$

A sequence $\left\{a_{n}\right\}$ is monotone decreasing, if its terms are non-increasing

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots .
$$

7. Definition: (Bounded Sequence):

1. A sequence $\left\{a_{n}\right\}$ is bounded above if there exits a real number M such that $a_{n} \leq M$ for all n. We call $M=$ the upper bound for the sequence.
2. A sequence $\left\{a_{n}\right\}$ is bounded below if there exits a real number N such that $a_{n} \geq N$ for all n. We call $N=$ the lower bound for the sequence.
3. A sequence $\left\{a_{n}\right\}$ is bounded if it is bounded above and below.

8. Theorem: Bounded Monotonic Sequences:

If $\left\{a_{n}\right\}$ is bounded and monotonic, then $\left\{a_{n}\right\}$ converges.

